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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
n Distributed reliability 
n Data replication 
n Parallel database systems 
q Database integration & querying 

q Query rewriting 
q Optimization issues 

q Peer-to-Peer data management 
q Stream data management 
q MapReduce-based distributed data management 
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Multidatabase Query 
Processing 

n Mediator/wrapper architecture 
n MDB query processing architecture 
n Query rewriting using views 
n Query optimization and execution 
n Query translation and execution 
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Advantages of M/W 
Architecture 

n Wrappers encapsulate the details of component 
DBMS  
l Export schema and cost information 
l Manage communication with Mediator 

n Mediator provides a global view to applications 
and users 
l Single point of access 

u May be itself distributed 
l Can specialize in some application domain 
l Perform query optimization using global knowledge 
l Perform result integration in a single format 
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Issues in MDB Query 
Processing  

n Component DBMSs are autonomous and may 
range from full-fledge relational DBMS to flat 
file systems 
l Different computing capabilities 

u Prevents uniform treatment of queries across DBMSs 
l Different processing cost and optimization capabilities 

u Makes cost modeling difficult 
l Different data models and query languages 

u Makes query translation and result integration 
difficult 

l Different runtime performance and unpredictable behavior 
u Makes query execution difficult 
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Mediator Data Model 

n Relational model 
l Simple and regular data structures 
l Mandatory schema 

n Object model 
l Complex (graphs) and regular data structures 
l Mandatory schema 

n Semi-structured (XML) model 
l Complex (trees) and irregular data structures 
l Optional schema (DTD or XSchema) 

In this chapter, we use the relational model which is sufficient to 
explain MDB query processing 
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MDB Query Processing 
Architecture 

Global/local 
correspondences 

Allocation and 
capabilities 

Local/DBMS mappings 
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Query Rewriting Using 
Views 

n Views used to describe the correspondences 
between global and local relations 
l Global As View: the global schema is integrated from the 

local databases and each global relation is a view over the 
local relations 

l Local As View: the global schema is defined 
independently of the local databases and each local relation 
is a view over the global relations 

n Query rewriting best done with Datalog, a 
logic-based language 
l More expressive power than relational calculus 
l  Inline version of relational domain calculus 
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Datalog Terminology 

n Conjunctive (SPJ) query: a rule of the form 
l Q(T) :- R1(T1), … Rn(Tn) 
l Q(T) : head of the query denoting the result relation 
l R1(T1), … Rn(Tn): subgoals in the body of the query 
l R1, … Rn: predicate names corresponding to relation names 
l T1, … Tn: refer to tuples with variables and constants 
l Variables correspond to attributes (as in domain calculus) 
l  “-” means unnamed variable 

n Disjunctive query = n conjunctive queries with 
same head predicate 
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Datalog Example 

With EMP(ENAME,TITLE,CITY) and 
ASG(ENAME,PNAME,DUR) 

SELECT !ENAME,TITLE, PNAME!
FROM !EMP, ASG!
WHERE !EMP.ENAME = ASG.ENAME !
AND !TITLE = "Programmer" OR DUR=24!

Q(ename,title,pname) :-  Emp(ename,title,-) 
      Asg(ename,pname,-), 
      title = “Programmer”. 

Q(ename,title,pname) :-  Emp(ename,title,-) 
      Asg(ename,pname,24). 
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Rewriting in GAV 

n Global schema similar to that of homogeneous 
DDBMS 
l Local relations can be fragments 
l But no completeness: a tuple in the global relation may not 

exist in local relations 
u Yields incomplete answers 

l And no disjointness: the same tuple may exist in different 
local databases 

u Yields duplicate answers 

n Rewriting (unfolding) 
l Similar to query modification 

u Apply view definition rules to the query and produce a 
union of conjunctive queries, one per rule application 

u Eliminate redundant queries 
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GAV Example Schema 

Local relations 
EMP1(ENAME,TITLE,CITY) 
EMP2(ENAME,TITLE,CITY) 
ASG1(ENAME,PNAME,DUR) 

Global relations 
EMP(ENAME,CITY) 
ASG(ENAME,PNAME,TITLE, DUR) 

Emp(ename,city) :-  Emp1(ename,title,city).  (r1) 
Emp(ename,city) :-  Emp2(ename,title,city).  (r2) 
Asg(ename,pname,title,dur) :-  Emp1(ename,title,city),  (r3) 

   Asg1(ename,pname,dur). 
Asg(ename,pname,title,dur) :-  Emp2(ename,title,city),  (r4) 

   Asg1(ename,pname,dur). 
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GAV Example Query  

Let Q: name and project for employees in Paris 
 Q(e,p) :- Emp(e,“Paris”), Asg(e,p,-,-). 

Unfolding produces Q’ 
 Q’(e,p) :- Emp1(e,-,“Paris”), Asg1(e,p,-,).  (q1) 
 Q’(e,p) :- Emp2(e,-,“Paris”), Asg1(e,p,-,).  (q2) 

where 
 q1 is obtained by applying r3 only or both r1 and r3 

In the latter case, there are redundant queries 

 same for q2 with r2 only or both r2 and r4   
 



CS742 – Distributed & Parallel DBMS Page 9.45 M. Tamer Özsu 

Rewriting in LAV 

n More difficult than in GAV 
l No direct correspondence between the terms in GS (emp, 

ename) and those in the views (emp1, emp2, ename) 
l There may be many more views than global relations 
l Views may contain complex predicates to reflect the 

content of the local relations 
u  e.g. a view Emp3 for only programmers 

n Often not possible to find an equivalent 
rewriting 
l Best is to find a maximally-contained query which produces 

a maximum subset of the answer 
u  e.g. Emp3 can only return a subset of the employees 
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Rewriting Algorithms 

n The problem to find an equivalent query is NP-
complete in the number of views and number of 
subgoals of the query 

n Thus, algorithms try to reduce the numbers of 
rewritings to be considered 

n Three main algorithms 
l Bucket  
l  Inverse rule  
l MiniCon 
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LAV Example Schema 

Local relations 
EMP1(ENAME,TITLE,CITY) 
EMP2(ENAME,TITLE,CITY) 
ASG1(ENAME,PNAME,DUR) 

Global relations 
EMP(ENAME,CITY) 
ASG(ENAME,PNAME,TITLE, DUR) 

Emp1(ename,title,city) :-  Emp(ename,city),  (r1) 
   Asg(ename,-,title,-). 

Emp2(ename,title,city) :-  Emp(ename,city),  (r2) 
  Asg(ename,-,title,-).  

Asg1(ename,pname,dur) :- 
 Asg(ename,pname,-,dur)  (r3) 
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Bucket Algorithm 

n Considers each predicate of the query Q 
independently to select only the relevant views 

Step 1  
l Build a bucket b for each subgoal q of Q that is not a 

comparison predicate 
l  Insert in b the heads of the views which are relevant to 

answer q 

Step 2 
l For each view V of the Cartesian product of the buckets, 

produce a conjunctive query 
u  If it is contained in Q, keep it 

n The rewritten query is a union of conjunctive 
queries 
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LAV Example Query 

Let Q be Q(e,p) :- Emp(e, “Paris”), Asg(e,p,-,-). 
Step1: we obtain 2 buckets (one for each subgoal of Q) 

 b1 = Emp1(ename,title’,city), Emp2(ename,title’,city) 
 b2 = Asg1(ename,pname,dur’)  

(the prime variables (title’ and dur’) are not useful) 

Step2: produces 
 Q’(e,p) :- Emp1(e,-, “Paris”), Asg1(e,p,-,).  (q1) 
 Q’(e,p) :- Emp2(e,-, “Paris”), Asg1(e,p,-,).  (q2) 
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Query Optimization and 
Execution 

n Takes a query expressed on local relations and 
produces a distributed QEP to be executed by 
the wrappers and mediator 

n Three main problems 
l Heterogeneous cost modeling 

u To produce a global cost model from component DBMS 
l Heterogeneous query optimization 

u To deal with different query computing capabilities 
l Adaptive query processing 

u To deal with strong variations in the execution 
environment 
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Heterogeneous Cost 
Modeling 

n Goal: determine the cost of executing the 
subqueries at component DBMS 

n Three approaches 
l Black-box: treats each component DBMS as a black-box 

and determines costs by running test queries 
l Customized: customizes an initial cost model 
l Dynamic: monitors the run-time behavior of the component 

DBMS and dynamically collect cost information 
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Black-box Approach 

n Define a logical cost expression 
l Cost =  init cost + cost to find qualifying tuples  

   + cost to process selected tuples 
u  The terms will differ much with different DBMS 

n Run probing queries on component DBMS to 
compute cost coefficients 
l Count the numbers of tuples, measure cost, etc. 
l Special case: sample queries for each class of important 

queries 
u  Use of classification to identify the classes 

n Problems 
l The instantiated cost model (by probing or sampling) may 

change over time 
l The logical cost function may not capture important details 

of component DBMS 
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Customized Approach 

n Relies on the wrapper (i.e. developer) to 
provide cost information to the mediator 

n Two solutions 
l Wrapper provides the logic to compute cost estimates 

u   Access_cost = reset + (card-1)*advance 
s   reset = time to initiate the query and receive a first tuple  
s   advance = time to get the next tuple (advance) 
s   card = result cardinality 

l Hierarchical cost model 
u Each node associates a query pattern with a cost 

function 
u The wrapper developer can give cost information at 

various levels of details, depending on knowledge of 
the component DBMS 
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Hierarchical Cost Model 



CS742 – Distributed & Parallel DBMS Page 9.55 M. Tamer Özsu 

Dynamic Approach 

n Deals with execution environment factors 
which may change 
l Frequently: load, throughput, network contention, etc. 
l Slowly: physical data organization, DB schemas, etc. 

n Two main solutions 
l Extend the sampling method to consider some new queries 

as samples and correct the cost model on a regular basis 
l Use adaptive query processing which computes cost during 

query execution to make optimization decisions 
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Heterogeneous Query 
Optimization 

n Deals with heterogeneous capabilities of 
component DBMS 
l One DBMS may support complex SQL queries while 

another only simple select on one fixed attribute 

n Two approaches, depending on the M/W 
interface level 
l Query-based 

u All wrappers support the same query-based interface 
(e.g. ODBC or SQL/MED) so they appear homogeneous 
to the mediator 

u Capabilities not provided by the DBMS must be 
supported by the wrappers 

l Operator-based 
u Wrappers export capabilities as compositions of 

operators 
u Specific capabilities are available to mediator 
u More flexibility in defining the level of M/W interface 
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Query-based Approach 

n We can use 2-step query optimization with a 
heterogeneous cost model 
l But centralized query optimizers produce left-linear join 

trees whereas in MDB, we want to push as much 
processing in the wrappers, i.e. exploit bushy trees 

n Solution: convert a left-linear join tree into a 
bushy tree such that 
l The initial total cost of the QEP is maintained 
l The response time is improved 

n Algorithm 
l  Iterative improvement of the initial left-linear tree by 

moving down subtrees while response time is improved 
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Left Linear vs Bushy Join 
Tree 



CS742 – Distributed & Parallel DBMS Page 9.59 M. Tamer Özsu 

Operator-based Approach 

n M/W communication in terms of subplans 
n Use of planning functions (Garlic) 

l Extension of cost-based centralized optimizer with new 
operators 

u Create temporary relations 
u Retrieve locally stored data 
u Push down operators in wrappers 
u accessPlan and joinPlan rules 

l Operator nodes annotated with 
u Location of operands, materialization, etc. 
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Planning Functions Example 
n Consider 3 component databases with 2 

wrappers: 
l w1 .db1: EMP(ENO,ENAME,CITY) 
l w1 .db2: ASG(ENO,PNAME,DUR) 
l w2 . db3: EMPASG(ENAME,CITY,PNAME,DUR) 

n Planning functions of w1 
l AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R)) 
l JoinPlan (R1, R2: rel, A: attlist, P: joinpred) = join(R1, R2, A, P) 

u  condition: db(R1)  ≠ db(R2) 
u  implemented by w1 

n Planning functions of w2 
l AccessPlan (R: rel, A: attlist, P: pred) = fetch(city=c) 

u  condition: (city=c) included in  P 
l AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R)) 

u  implemented by w2 
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Heterogenous QEP 

SELECT !ENAME,PNAME,DUR!
FROM !EMPASG!
WHERE !CITY = "Paris" AND DUR>24!
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Adaptive Query Processing - 
Motivations 

n Assumptions underlying heterogeneous query 
optimization  
l The optimizer has sufficient knowledge about runtime 

u Cost information 
l Runtime conditions remain stable during query execution 

n Appropriate for MDB systems with few data 
sources in a controlled environment 

n Inappropriate for changing environments with 
large numbers of data sources and 
unpredictable runtime conditions 
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Example: QEP with Blocked 
Operator 

n Assume ASG, EMP, 
PROJ and PAY each at 
a different site 

n If ASG site is down, the 
entire pipeline is 
blocked 

n However, with some 
reorganization, the join 
of EMP and PAY could 
be done while waiting 
for ASG 
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Adaptive Query Processing – 
Definition 

n A query processing is adaptive if it receives 
information from the execution environment 
and determines its behavior accordingly 
l Feed-back loop between optimizer and runtime 

environment 
l Communication of runtime information between mediator, 

wrappers and component DBMS 
u Hard to obtain with legacy databases 

n Additional components 
l Monitoring, assessment, reaction 
l Embedded in control operators of QEP 

n Tradeoff between reactiveness and overhead of 
adaptation 



CS742 – Distributed & Parallel DBMS Page 9.65 M. Tamer Özsu 

Adaptive Components 

n Monitoring parameters (collected by sensors in 
QEP) 
l Memory size 
l Data arrival rates 
l Actual statistics 
l Operator execution cost 
l Network throughput 

n Adaptive reactions 
l Change schedule 
l Replace an operator by an equivalent one 
l Modify the behavior of an operator 
l Data repartitioning 
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Eddy Approach 

n Query compilation: produces a tuple 〈D, P, C, 
Eddy〉 
l D: set of data sources (e.g. relations) 
l P: set of predicates 
l C: ordering constraints to be followed at runtime 
l   Eddy: n-ary operator between D and P 

n Query execution: operator ordering on a tuple 
basis using Eddy 
l On-the-fly tuple routing to operators based on cost and 

selectivity 
l Change of join ordering during execution 

u Requires symmetric join algorithms such Ripple joins 
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QEP with Eddy 

n  D= {R, S, T} 

n  P = {σP (R), R JN1 S, S JN2 T) 
n  C = {S < T} where < imposes S tuples to probe T tuples using an index on 

join attribute 
l  Access to T is wrapped by JN 

Result tuples 
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Query Translation and 
Execution 

n Performed by wrappers using the component 
DBMS 
l Conversion between common interface of mediator and 

DBMS-dependent interface 
u Query translation from wrapper to DBMS 
u Result format translation from DBMS to wrapper 

l Wrapper has the local schema exported to the mediator (in 
common interface) and the mapping to the DBMS schema 

l Common interface can be query-based (e.g. ODBC or SQL/
MED) or operator-based 

n In addition, wrappers can implement operators 
not supported by the component DBMS, e.g. 
join 
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Wrapper Placement 

n Depends on the level of 
autonomy of component 
DB 

n Cooperative DB 
l May place wrapper at 

component DBMS site 
l Efficient wrapper-DBMS com. 

n Uncooperative DB 
l May place wrapper at 

mediator 
l Efficient mediator-wrapper 

com. 

n Impact on cost functions 


