
CS742 – Distributed & Parallel DBMS Page 9.32 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
n Distributed query optimization
n Distributed transactions & concurrency control
n Distributed reliability
n Data replication
n Parallel database systems
q Database integration & querying

q Query rewriting
q Optimization issues

q Peer-to-Peer data management
q Stream data management
q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 9.33 M. Tamer Özsu

Multidatabase Query
Processing

n Mediator/wrapper architecture
n MDB query processing architecture
n Query rewriting using views
n Query optimization and execution
n Query translation and execution

CS742 – Distributed & Parallel DBMS Page 9.34 M. Tamer Özsu

Mediator/Wrapper
Architecture

Global

Query
Processing

local

schema

local

schema

view

Result
Integration

Local

Schema

Results

Query

Different
Interfaces

Same
Interface

Mediator

DBMS1 Wrapper1

DBMS2 Wrapper2

DBMS3 Wrapper3

DBMS4

CS742 – Distributed & Parallel DBMS Page 9.35 M. Tamer Özsu

Advantages of M/W
Architecture

n Wrappers encapsulate the details of component
DBMS
l Export schema and cost information
l Manage communication with Mediator

n Mediator provides a global view to applications
and users
l Single point of access

u May be itself distributed
l Can specialize in some application domain
l Perform query optimization using global knowledge
l Perform result integration in a single format

CS742 – Distributed & Parallel DBMS Page 9.36 M. Tamer Özsu

Issues in MDB Query
Processing

n Component DBMSs are autonomous and may
range from full-fledge relational DBMS to flat
file systems
l Different computing capabilities

u Prevents uniform treatment of queries across DBMSs
l Different processing cost and optimization capabilities

u Makes cost modeling difficult
l Different data models and query languages

u Makes query translation and result integration
difficult

l Different runtime performance and unpredictable behavior
u Makes query execution difficult

CS742 – Distributed & Parallel DBMS Page 9.37 M. Tamer Özsu

Mediator Data Model

n Relational model
l Simple and regular data structures
l Mandatory schema

n Object model
l Complex (graphs) and regular data structures
l Mandatory schema

n Semi-structured (XML) model
l Complex (trees) and irregular data structures
l Optional schema (DTD or XSchema)

In this chapter, we use the relational model which is sufficient to
explain MDB query processing

CS742 – Distributed & Parallel DBMS Page 9.38 M. Tamer Özsu

MDB Query Processing
Architecture

Global/local
correspondences

Allocation and
capabilities

Local/DBMS mappings

CS742 – Distributed & Parallel DBMS Page 9.39 M. Tamer Özsu

Query Rewriting Using
Views

n Views used to describe the correspondences
between global and local relations
l Global As View: the global schema is integrated from the

local databases and each global relation is a view over the
local relations

l Local As View: the global schema is defined
independently of the local databases and each local relation
is a view over the global relations

n Query rewriting best done with Datalog, a
logic-based language
l More expressive power than relational calculus
l  Inline version of relational domain calculus

CS742 – Distributed & Parallel DBMS Page 9.40 M. Tamer Özsu

Datalog Terminology

n Conjunctive (SPJ) query: a rule of the form
l Q(T) :- R1(T1), … Rn(Tn)
l Q(T) : head of the query denoting the result relation
l R1(T1), … Rn(Tn): subgoals in the body of the query
l R1, … Rn: predicate names corresponding to relation names
l T1, … Tn: refer to tuples with variables and constants
l Variables correspond to attributes (as in domain calculus)
l  “-” means unnamed variable

n Disjunctive query = n conjunctive queries with
same head predicate

CS742 – Distributed & Parallel DBMS Page 9.41 M. Tamer Özsu

Datalog Example

With EMP(ENAME,TITLE,CITY) and
ASG(ENAME,PNAME,DUR)

SELECT !ENAME,TITLE, PNAME!
FROM !EMP, ASG!
WHERE !EMP.ENAME = ASG.ENAME !
AND !TITLE = "Programmer" OR DUR=24!

Q(ename,title,pname) :- Emp(ename,title,-)
 Asg(ename,pname,-),
 title = “Programmer”.

Q(ename,title,pname) :- Emp(ename,title,-)
 Asg(ename,pname,24).

CS742 – Distributed & Parallel DBMS Page 9.42 M. Tamer Özsu

Rewriting in GAV

n Global schema similar to that of homogeneous
DDBMS
l Local relations can be fragments
l But no completeness: a tuple in the global relation may not

exist in local relations
u Yields incomplete answers

l And no disjointness: the same tuple may exist in different
local databases

u Yields duplicate answers

n Rewriting (unfolding)
l Similar to query modification

u Apply view definition rules to the query and produce a
union of conjunctive queries, one per rule application

u Eliminate redundant queries

CS742 – Distributed & Parallel DBMS Page 9.43 M. Tamer Özsu

GAV Example Schema

Local relations
EMP1(ENAME,TITLE,CITY)
EMP2(ENAME,TITLE,CITY)
ASG1(ENAME,PNAME,DUR)

Global relations
EMP(ENAME,CITY)
ASG(ENAME,PNAME,TITLE, DUR)

Emp(ename,city) :- Emp1(ename,title,city). (r1)
Emp(ename,city) :- Emp2(ename,title,city). (r2)
Asg(ename,pname,title,dur) :- Emp1(ename,title,city), (r3)

 Asg1(ename,pname,dur).
Asg(ename,pname,title,dur) :- Emp2(ename,title,city), (r4)

 Asg1(ename,pname,dur).

CS742 – Distributed & Parallel DBMS Page 9.44 M. Tamer Özsu

GAV Example Query

Let Q: name and project for employees in Paris
 Q(e,p) :- Emp(e,“Paris”), Asg(e,p,-,-).

Unfolding produces Q’
 Q’(e,p) :- Emp1(e,-,“Paris”), Asg1(e,p,-,). (q1)
 Q’(e,p) :- Emp2(e,-,“Paris”), Asg1(e,p,-,). (q2)

where
 q1 is obtained by applying r3 only or both r1 and r3

In the latter case, there are redundant queries

 same for q2 with r2 only or both r2 and r4

CS742 – Distributed & Parallel DBMS Page 9.45 M. Tamer Özsu

Rewriting in LAV

n More difficult than in GAV
l No direct correspondence between the terms in GS (emp,

ename) and those in the views (emp1, emp2, ename)
l There may be many more views than global relations
l Views may contain complex predicates to reflect the

content of the local relations
u  e.g. a view Emp3 for only programmers

n Often not possible to find an equivalent
rewriting
l Best is to find a maximally-contained query which produces

a maximum subset of the answer
u  e.g. Emp3 can only return a subset of the employees

CS742 – Distributed & Parallel DBMS Page 9.46 M. Tamer Özsu

Rewriting Algorithms

n The problem to find an equivalent query is NP-
complete in the number of views and number of
subgoals of the query

n Thus, algorithms try to reduce the numbers of
rewritings to be considered

n Three main algorithms
l Bucket
l  Inverse rule
l MiniCon

CS742 – Distributed & Parallel DBMS Page 9.47 M. Tamer Özsu

LAV Example Schema

Local relations
EMP1(ENAME,TITLE,CITY)
EMP2(ENAME,TITLE,CITY)
ASG1(ENAME,PNAME,DUR)

Global relations
EMP(ENAME,CITY)
ASG(ENAME,PNAME,TITLE, DUR)

Emp1(ename,title,city) :- Emp(ename,city), (r1)
 Asg(ename,-,title,-).

Emp2(ename,title,city) :- Emp(ename,city), (r2)
 Asg(ename,-,title,-).

Asg1(ename,pname,dur) :-
 Asg(ename,pname,-,dur) (r3)

CS742 – Distributed & Parallel DBMS Page 9.48 M. Tamer Özsu

Bucket Algorithm

n Considers each predicate of the query Q
independently to select only the relevant views

Step 1
l Build a bucket b for each subgoal q of Q that is not a

comparison predicate
l  Insert in b the heads of the views which are relevant to

answer q

Step 2
l For each view V of the Cartesian product of the buckets,

produce a conjunctive query
u  If it is contained in Q, keep it

n The rewritten query is a union of conjunctive
queries

CS742 – Distributed & Parallel DBMS Page 9.49 M. Tamer Özsu

LAV Example Query

Let Q be Q(e,p) :- Emp(e, “Paris”), Asg(e,p,-,-).
Step1: we obtain 2 buckets (one for each subgoal of Q)

 b1 = Emp1(ename,title’,city), Emp2(ename,title’,city)
 b2 = Asg1(ename,pname,dur’)

(the prime variables (title’ and dur’) are not useful)

Step2: produces
 Q’(e,p) :- Emp1(e,-, “Paris”), Asg1(e,p,-,). (q1)
 Q’(e,p) :- Emp2(e,-, “Paris”), Asg1(e,p,-,). (q2)

CS742 – Distributed & Parallel DBMS Page 9.50 M. Tamer Özsu

Query Optimization and
Execution

n Takes a query expressed on local relations and
produces a distributed QEP to be executed by
the wrappers and mediator

n Three main problems
l Heterogeneous cost modeling

u To produce a global cost model from component DBMS
l Heterogeneous query optimization

u To deal with different query computing capabilities
l Adaptive query processing

u To deal with strong variations in the execution
environment

CS742 – Distributed & Parallel DBMS Page 9.51 M. Tamer Özsu

Heterogeneous Cost
Modeling

n Goal: determine the cost of executing the
subqueries at component DBMS

n Three approaches
l Black-box: treats each component DBMS as a black-box

and determines costs by running test queries
l Customized: customizes an initial cost model
l Dynamic: monitors the run-time behavior of the component

DBMS and dynamically collect cost information

CS742 – Distributed & Parallel DBMS Page 9.52 M. Tamer Özsu

Black-box Approach

n Define a logical cost expression
l Cost = init cost + cost to find qualifying tuples

 + cost to process selected tuples
u  The terms will differ much with different DBMS

n Run probing queries on component DBMS to
compute cost coefficients
l Count the numbers of tuples, measure cost, etc.
l Special case: sample queries for each class of important

queries
u  Use of classification to identify the classes

n Problems
l The instantiated cost model (by probing or sampling) may

change over time
l The logical cost function may not capture important details

of component DBMS

CS742 – Distributed & Parallel DBMS Page 9.53 M. Tamer Özsu

Customized Approach

n Relies on the wrapper (i.e. developer) to
provide cost information to the mediator

n Two solutions
l Wrapper provides the logic to compute cost estimates

u  Access_cost = reset + (card-1)*advance
s  reset = time to initiate the query and receive a first tuple
s  advance = time to get the next tuple (advance)
s  card = result cardinality

l Hierarchical cost model
u Each node associates a query pattern with a cost

function
u The wrapper developer can give cost information at

various levels of details, depending on knowledge of
the component DBMS

CS742 – Distributed & Parallel DBMS Page 9.54 M. Tamer Özsu

Hierarchical Cost Model

CS742 – Distributed & Parallel DBMS Page 9.55 M. Tamer Özsu

Dynamic Approach

n Deals with execution environment factors
which may change
l Frequently: load, throughput, network contention, etc.
l Slowly: physical data organization, DB schemas, etc.

n Two main solutions
l Extend the sampling method to consider some new queries

as samples and correct the cost model on a regular basis
l Use adaptive query processing which computes cost during

query execution to make optimization decisions

CS742 – Distributed & Parallel DBMS Page 9.56 M. Tamer Özsu

Heterogeneous Query
Optimization

n Deals with heterogeneous capabilities of
component DBMS
l One DBMS may support complex SQL queries while

another only simple select on one fixed attribute

n Two approaches, depending on the M/W
interface level
l Query-based

u All wrappers support the same query-based interface
(e.g. ODBC or SQL/MED) so they appear homogeneous
to the mediator

u Capabilities not provided by the DBMS must be
supported by the wrappers

l Operator-based
u Wrappers export capabilities as compositions of

operators
u Specific capabilities are available to mediator
u More flexibility in defining the level of M/W interface

CS742 – Distributed & Parallel DBMS Page 9.57 M. Tamer Özsu

Query-based Approach

n We can use 2-step query optimization with a
heterogeneous cost model
l But centralized query optimizers produce left-linear join

trees whereas in MDB, we want to push as much
processing in the wrappers, i.e. exploit bushy trees

n Solution: convert a left-linear join tree into a
bushy tree such that
l The initial total cost of the QEP is maintained
l The response time is improved

n Algorithm
l  Iterative improvement of the initial left-linear tree by

moving down subtrees while response time is improved

CS742 – Distributed & Parallel DBMS Page 9.58 M. Tamer Özsu

Left Linear vs Bushy Join
Tree

CS742 – Distributed & Parallel DBMS Page 9.59 M. Tamer Özsu

Operator-based Approach

n M/W communication in terms of subplans
n Use of planning functions (Garlic)

l Extension of cost-based centralized optimizer with new
operators

u Create temporary relations
u Retrieve locally stored data
u Push down operators in wrappers
u accessPlan and joinPlan rules

l Operator nodes annotated with
u Location of operands, materialization, etc.

CS742 – Distributed & Parallel DBMS Page 9.60 M. Tamer Özsu

Planning Functions Example
n Consider 3 component databases with 2

wrappers:
l w1 .db1: EMP(ENO,ENAME,CITY)
l w1 .db2: ASG(ENO,PNAME,DUR)
l w2 . db3: EMPASG(ENAME,CITY,PNAME,DUR)

n Planning functions of w1
l AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R))
l JoinPlan (R1, R2: rel, A: attlist, P: joinpred) = join(R1, R2, A, P)

u  condition: db(R1) ≠ db(R2)
u  implemented by w1

n Planning functions of w2
l AccessPlan (R: rel, A: attlist, P: pred) = fetch(city=c)

u  condition: (city=c) included in P
l AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R))

u  implemented by w2

CS742 – Distributed & Parallel DBMS Page 9.61 M. Tamer Özsu

Heterogenous QEP

SELECT !ENAME,PNAME,DUR!
FROM !EMPASG!
WHERE !CITY = "Paris" AND DUR>24!

CS742 – Distributed & Parallel DBMS Page 9.62 M. Tamer Özsu

Adaptive Query Processing -
Motivations

n Assumptions underlying heterogeneous query
optimization
l The optimizer has sufficient knowledge about runtime

u Cost information
l Runtime conditions remain stable during query execution

n Appropriate for MDB systems with few data
sources in a controlled environment

n Inappropriate for changing environments with
large numbers of data sources and
unpredictable runtime conditions

CS742 – Distributed & Parallel DBMS Page 9.63 M. Tamer Özsu

Example: QEP with Blocked
Operator

n Assume ASG, EMP,
PROJ and PAY each at
a different site

n If ASG site is down, the
entire pipeline is
blocked

n However, with some
reorganization, the join
of EMP and PAY could
be done while waiting
for ASG

CS742 – Distributed & Parallel DBMS Page 9.64 M. Tamer Özsu

Adaptive Query Processing –
Definition

n A query processing is adaptive if it receives
information from the execution environment
and determines its behavior accordingly
l Feed-back loop between optimizer and runtime

environment
l Communication of runtime information between mediator,

wrappers and component DBMS
u Hard to obtain with legacy databases

n Additional components
l Monitoring, assessment, reaction
l Embedded in control operators of QEP

n Tradeoff between reactiveness and overhead of
adaptation

CS742 – Distributed & Parallel DBMS Page 9.65 M. Tamer Özsu

Adaptive Components

n Monitoring parameters (collected by sensors in
QEP)
l Memory size
l Data arrival rates
l Actual statistics
l Operator execution cost
l Network throughput

n Adaptive reactions
l Change schedule
l Replace an operator by an equivalent one
l Modify the behavior of an operator
l Data repartitioning

CS742 – Distributed & Parallel DBMS Page 9.66 M. Tamer Özsu

Eddy Approach

n Query compilation: produces a tuple 〈D, P, C,
Eddy〉
l D: set of data sources (e.g. relations)
l P: set of predicates
l C: ordering constraints to be followed at runtime
l  Eddy: n-ary operator between D and P

n Query execution: operator ordering on a tuple
basis using Eddy
l On-the-fly tuple routing to operators based on cost and

selectivity
l Change of join ordering during execution

u Requires symmetric join algorithms such Ripple joins

CS742 – Distributed & Parallel DBMS Page 9.67 M. Tamer Özsu

QEP with Eddy

n  D= {R, S, T}

n  P = {σP (R), R JN1 S, S JN2 T)
n  C = {S < T} where < imposes S tuples to probe T tuples using an index on

join attribute
l  Access to T is wrapped by JN

Result tuples

CS742 – Distributed & Parallel DBMS Page 9.68 M. Tamer Özsu

Query Translation and
Execution

n Performed by wrappers using the component
DBMS
l Conversion between common interface of mediator and

DBMS-dependent interface
u Query translation from wrapper to DBMS
u Result format translation from DBMS to wrapper

l Wrapper has the local schema exported to the mediator (in
common interface) and the mapping to the DBMS schema

l Common interface can be query-based (e.g. ODBC or SQL/
MED) or operator-based

n In addition, wrappers can implement operators
not supported by the component DBMS, e.g.
join

CS742 – Distributed & Parallel DBMS Page 9.69 M. Tamer Özsu

Wrapper Placement

n Depends on the level of
autonomy of component
DB

n Cooperative DB
l May place wrapper at

component DBMS site
l Efficient wrapper-DBMS com.

n Uncooperative DB
l May place wrapper at

mediator
l Efficient mediator-wrapper

com.

n Impact on cost functions

